INFERENCE OF RECENT DEMOGRAPHIC HISTORY OF A POPULATION ISOLATE USING SNP ARRAY AND WHOLE GENOME DATA

Ariella Gladstein

Ecology and Evolutionary Biology

BASIC RESEARCH IS IMPORTANT!

- My research focuses on a small part of basic evolutionary biology questions.
- Huge computational resources and modern techniques to contribute to basic evolution questions

THEMES OF DISSERTATION

- Detection of runs of homozygosity from SNP arrays
 - Improving identification of runs of homozygosity (Ch. 2)
 - Correcting ascertainment bias in runs of homozygosity (App. C)
- Scaling up Approximate Bayesian Computation for whole chromosomes
 - Create efficient pipeline to simulate demographic models and calculate summary statistics (App. A)
 - Create generalized high throughput workflow (Ch. 4)
- Infer history of the Ashkenazi Jews
 - Substructure in AJ? (Ch. 5)
 - Khazarian origin? (App. B)

WHO ARE THE ASHKENAZI JEWS?

Culturally, religiously, and linguistically identify as Jews whose ancestors came from the Rhine Valley.

ASHKENAZI JEWS: AN INTERESTING STUDY POPULATION

- High frequency of genetic disorders
- Population isolate
- Complex demographic history
- Well documented historical record

WESTERN VS. EASTERN ASHKENAZI JEWS

WESTERN VS. EASTERN ASHKENAZI JEWS

Germany, 1900's

PREVIOUS STUDIES

gen ago

Partial Middle Eastern and European

Behar et al. 2010; Palamara et al. 2012; Carmi et al. 2014; Xue et al. 2016

PREVIOUS STUDIES: AJ SUBSTRUCTURE

Y chromosome and mtDNA markers show differences among AJ from different countries

Behar et al. 2004b

MODELS OF ASHKENAZI HISTORY

THEMES OF DISSERTATION

- Detection of runs of homozygosity from SNP arrays
 - Improving identification of runs of homozygosity (Ch. 2)
 - Correcting ascertainment bias in runs of homozygosity (App. C)
- Scaling up Approximate Bayesian Computation for whole chromosomes
 - Create efficient pipeline to simulate demographic models and calculate summary statistics (App. A)
 - Create generalized high throughput workflow (Ch. 4)
- Infer history of the Ashkenazi Jews
 - Substructure in AJ? (Ch. 5)
 - Khazarian origin? (App. B)

HAPLOTYPES CAN BE USED TO INFER HISTORY

- Over time, recombination breaks up segments of the genome in predictable ways
 - Segments identical by descent (IBD) gene flow, effective size, relatedness
 - Runs of homozygosity (ROH) effective size, relatedness, random mating
 - Linkage disequilibrium blocks (LD) gene flow, effective size
 - Ancestry blocks gene flow

HAPLOTYPES CAN BE USED TO INFER HISTORY

- Over time, recombination breaks up segments of the genome in predictable ways
 - Segments identical by descent (IBD) gene flow, effective size, relatedness
 - Runs of homozygosity (ROH)
 effective size, relatedness, random mating
 - Linkage disequilibrium blocks (LD) gene flow, effective size
 - Ancestry blocks gene flow

SEGMENTS IDENTICAL BY DESCENT (IBD)

A region on two chromosomes that was inherited from a common ancestor

- Every site is (technically) IBD
- Practically, we define IBD based on a minimum length

RUNS OF HOMOZYGOSITY (ROH)

- A ROH is a genomic segment of continuous homozygous sites.
- ROH are defined based on a minimum length

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. Each shaded grey area is a ROH

RUNS OF HOMOZYGOSITY (ROH)

- A ROH is a genomic segment of continuous homozygous sites.
- ROH are defined based on a minimum length

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. Each shaded grey area is a ROH

ROH reflect relatedness of ancestors Smaller Ne increases likelihood of creating ROH

SINGLE NUCLEOTIDE POLYMORPHISM (SNP) ARRAYS

- Genome-wide and many SNPs (100 K's millions)
- Benefits:
 - Inexpensive
 - Low genotyping error rates
 - Easy to work with
- Disadvantages:
 - Ascertainment bias reduction of represented genetic diversity

HOW DOES BIAS FROM SNP ARRAYS AFFECT HAPLOTYPE STATISTICS?

- Extensive work on the effect of ascertainment bias on the allele frequency spectrum.
- Haplotype statistics considered to be less sensitive to ascertainment bias.

C	C Secure https://www.cog-genomics.org/plink/1.9							
P	LINK 1.9 home	plink2-users	GitHub	File formats	PLINK 1.9 index	PLINK 2.0		
Intro S: 2 D: 2	duction, downloads 28 May 2018 (b6.1) 28 May 2018	PLINK 1.9	0 beta					

Google Scholar	"runs of homozygosity"	Q
Articles	About 540 results (0.08 sec)	
Any time Since 2018 Since 2017	PLINK: a tool set for whole-genome association and population-based	d linkage analyses

C ■ Secure https://www.cog-genomics.org/plink/1.9								
PLINK 1.9 home	plink2-users	GitHub	File formats	PLINK 1.9 index	PLINK 2.0			
Introduction, downloads S: 28 May 2018 (b6.1) D: 28 May 2018	PLINK 1.90) beta						
indep r/-r2 show-tags blocks Distance matrices Identity-by-state/Hamming (distance) Relationship/covariance (make-grm-bin) rel-cutoff Distance-pheno. analysis (ibs-test) Identity-by-descent genome homozyg Population stratification cluster pca mds-plot neighbour Association analysis Basic case/control (assoc,model)	<pre>Runs of homozyghomozyg <group lengths="">homozyg-snp [nhomozyg-kb [mhomozyg-densinhomozyg-densinhomozyg-densinhomozyg-windonhomozyg-windonhomozyg-windonhomozyg-windon If any of these flags a scanning algorithm.</group></pre>	tch> <extend> <subt] ow hit] scanning window hit hit rate] ports is generated using F tails.</subt </extend>	.] PLINK 1.07's					

Sardinians Genetic Background Explained by Runs of Colorectal cancer risk is not associated with increased levels Homozygosity and Genomic Regions under Positive of homozygosity in Saudi Arabia Selection Abdul K. Siraj, PhD¹, Hanif G. Khalak, PhD², Mehar Sultana, MSc¹, Maha Inbreeding and homozygosity in Francesca Ortu³, Fabio Rosa², Simonetta Guarrera², Prashant Bavi, MD¹, Nasser Al-Sanea, MD³, Fouad Al-Dayel, MD⁴, Shah ^{4,5}, Cristina Barlassina^{4,5}, Chiara Troffa³, Fowzan S. Alkuraya, MD, FACMG⁵, Khawla S. Al-Kuraya, MD Fresu³, Nicola Glorioso³, Alberto Piazza^{1,2}, breast cancer survival harvard.edu/purcell/plink/) was used, with default parameters (*-homozyg* option)). The following offware except for minimum length of ROH, minimum number of SNPs Hauke Thomsen¹, Miguel Inacio da Silva Filho¹, Andrea Woltmann¹, Robert Johansson² Jorunn E. Eyfjörd³, Ute Hamann⁴, Jonas Ma Genomic inbreeding estimation in small populations: evaluation of per ROH, and maximum number of heterozygous SNPs per Roger Henriksson^{2,8}, Stefan Herms^{9,10}, Per Kari Hemminki^{1,11}, Per Lenner² & Asta Förs runs of homozygosity in three local dairy cattle breeds The Association of Genotype-Based Internation SNPs and, hence, to balance the number a Coefficient with a Range of Physical S. Mastrangelo^{1†}, M. Tolone¹, R. Di Gerlando¹, L. Fontanesi², M. T. Sardina¹ and window. We set the remaining options to B. Portolano Human Traits dow, thereby ensuring >90% positive-predictive value of following criteria were used to define the ROH: (i) the minieters for "homozyg-snp" option according to our heuristic Karin J. H. Verweij^{1,2}, Abdel Abdellaoui², Juha Veijola³, Sylvain Seb mum number of SNPs included in the ROH was fixed to 40; Matthew C. Keller^{6,7}, Marjo-Riitta Järvelin^{4,5,8,9,10}, Brendan P. Zietsch (ii) the minimum length that constituted the ROH was set to Runs of Homozygosity in European Populations In this study we defined ROHs (based on 4 Mb; (iii) two missing SNPs were allowed in the ROH; from Howrigan et al. [26], as stretches of at least Ruth McQuillan,¹ Anne-Louise Leutenegger,² Rehab Abdel-Rahman,^{1,7} Christopher (iv) minimum density of one SNP every 100 kb; (v) maximum homozygous SNPs (not allowing any heterozyg Marijana Pericic,³ Lovorka Barac-Lauc,³ Nina Smolej-Narancic,³ Branka Janicijevic,³ gap between consecutive SNPs of 1 Mb. Moreover, the Albert Tenesa,⁵ Andrew K. MacLeod,⁶ Susan M. Farrington,⁵ Pavao Rudan,³ Caroli pruned SNP data. To minimize underestimation number of allowed heterozygous SNPs was set to different Veronique Vitart,⁷ Igor Rudan,^{1,8,9} Sarah H. Wild,¹ Malcolm G. Dunlop,⁵ Alan F. runs, three (approximately 5%) missing gen Harry Campbell,¹ and James F. Wilson^{1,*} values: from one to three. Mean F_{ROH} values obtained otherwise unbroken homozygous segment were 5000 kb (minimum 50 SNPs) across the genome to detect long mapping in a family presenting with contiguous runs of homozygous genotypes. An occasional geno-**Response to "Cross-Species Application of SNP Chip** epilepsy and hearing impairment typing error or missing genotype occurring in an otherwise-unbro-Suitable for Identifying Runs of Homozygosity" by S ken homozygous segment could result in the underestimation of ROHs. To address this, the program allows one heterozygous and Miller, and Kardos n Maclean², Muhammad Irfan³, Farooq Naeem⁴, Stephen Cass², five missing calls per window. lter J Muir¹, Douglas HR Blackwood¹ and Muhammad Ayub⁵ A threshold was set for the minimum length (kb) needed for Veronika Kharzinova, Alexander A. Sermyagin, Elena A. Gladyr, Got ns of homozygosity' analytical tool set. Inspection of a tract to qualify as homozygous. Because strong linkage disequiand Natalia A. Zinovieva mozygous tract lengths was limited to five or more librium (LD), typically extending up to about 100 kb, is common throughout the genome,^{48–51} short tracts of homozygosity are *isecutive SNPs, and low SNP densities in centromeric* We would like to clarify that we used a sliding 100-kb window very prevalent. For exclusion of these short and very common ions were excluded. The length of homozygous regions a size of 100 SNPs to research ROH. In general, the window siz ROHs that occur in all individuals in all populations, the minis taken to be from the most proximal to the most distal 10 000kb, not 100K SNPs as described in Shafer et al. By de mum length for an ROH was set at 500 kb. All empirical studies mozygous SNP, and the programme allows one hetero-PLINK has a minimum density of 1 SNP/50kb (Purcell et al. 2007). zygous SNP within this run. Marker positions are

SIMULATE GENOME

- Coalescent simulation
- I00 iterations
- Ne = 1000

Β

• Random *t*, such that *Fst* = [0,0.2]

Α

CREATE PSEUDO ARRAY

Use samples from population A to make pseudo array

FIND ROH

• **Genome ROH**: Script that finds pure ROH longer than k.

• **Pseudo array ROH:**

- Script that finds pure ROH longer than k.
- PLINK 1.09 (program used for SNP array data)

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. Each shaded grey area is a ROH **OPTIMIZE PLINK PARAMETERS**

- Run PLINK on pseudo array with grid search of parameters (6,561 parameter sets)
- Identify parameter sets that give ROH closest to true ROH

where **x** is the set of *m* ROH found by plink and **y** is the set of *n* real ROH. D = 0 is ideal.

RESULTS: BEST PLINK PARAMETERS

DEVELOPED CORRECTION FOR ASCERTAINMENT BIAS WITH STRICTROH AND BEST PLINK PARAMETERS

Effect of ascertainment bias on ROH in humans not substantial

• 128 AJ whole genomes published

• Can incorporate SNP array ascertainment into model for ABC Effects of

Effects of ascertainment bias taken care of

THEMES OF DISSERTATION

- Detection of runs of homozygosity from SNP arrays
 - Improving identification of runs of homozygosity (Ch. 2)
 - Correcting ascertainment bias in runs of homozygosity (App. C)
- Scaling up Approximate Bayesian Computation for whole chromosomes
 - Create efficient pipeline to simulate demographic models and calculate summary statistics (App. A)
 - Create generalized high throughput workflow (Ch. 4)
- Infer history of the Ashkenazi Jews
 - Substructure in AJ? (Ch. 5)
 - Khazarian origin? (App. B)

Effective population size

DEMOGRAPHIC PARAMETERS DEFINE POPULATIONS' HISTORIES

- A demographic model generates data, determined by a set of parameters
- Parameter examples:
 - population sizes,
 - divergence times,
 - admixture proportions, etc.

WHAT IS ABC?

- We want the posterior probability of the parameters given the data (D) Likelihood of the data Prior probability of the probability $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ Marginal likelihood
- Approximate the likelihood function by simulations that are compared to the data (D)

WHAT IS APPROXIMATE BAYESIAN COMPUTATION (ABC) USED FOR?

Sunnaker et al. (2013).

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 0. COLLECT DATA AND CALCULATE SUMMARY STATISTICS

| rs3737728 0 |0||278 0 0 0 | 0 | | | 0 | | | 0 | | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | 0 | | 0 | rs9442398 0 |0||558 0 0 0 | 0 | 0 0 0 0 | | | | 0 0 0 | 0 | 0 | 0 | 0 | 1 | rs|2726255 0 |0398|3 0 | 0 | 0 | 1 | 0 | 0 | 0 0 0 0 | 1 0 | 1 | 0 0 0 | | rs7540009 0 | 050098 | | | | 0 | | | 0 | | | 0 | | | 0 | | | | | | | | 0 | | | | rs||807848 0 |05|029 | | 0 0 0 0 | | 0 0 | | 0 0 | | | 0 0 | | | 0 0 | | | rs9442373 0 |05250| 0 | 0 0 0 0 | | 0 0 | | 0 0 0 0 | | 0 | | 0 0 | | 0 0 | | | rs7553429 0 1080420 0 | | 0 | | | | | | | | 0 0 0 | | 0 0 0 | | 0 0 0 | | | rs4970362 0 | 08460| | | 0 | 0 | 0 0 | | | | | | 0 | 0 0 0 | 0 | 0 0 0 |

- Number of segregating sites
- nucleotide diversity
- Fst
- Tajima's D
- IBD stats, etc.

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: I. PICK MODELS AND PRIORS

- Parameters $(\mathbf{\Theta})$:
 - Divergence times (Ti)
 - Population sizes (Nj)
 - Proportion of gene flow (mj)

• etc...

Prior distribution of model parameter θ

	model parameter e
	-
0	

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 2. SIMULATE MODELS ACCORDING TO THE PRIORS AND CALCULATE SUMMARY STATISTICS

Sunnaker et al. (2013).

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 3. ADDRESS CORRELATIONS AMONG STATISTICS

• Prune statistics for high pairwise correlation

or

• Transform statistics with Partial Least Squares (PLS)

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 4. RETAIN N CLOSEST SIMULATIONS TO OBSERVED DATA

- Creates truncated prior by accepting some proportion of parameters and summary stats pairs closest to observed data
- Closest is defined by Euclidean distance between the simulated and observed summary statistics

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 5. LINEAR REGRESSION ON THE SUMMARY STATISTICS AND TRUNCATED PRIOR

- Retained parameter values adjusted according to a linear transformation
- New parameter values form a sample from the posterior

IMPLEMENTATION OF ABC WITH ABCTOOLBOX: 7. BUILD POSTERIOR DISTRIBUTION OF PARAMETERS

HOW DO WE PERFORM SIMULATIONS AND CALCULATE SUMMARY STATISTICS?

HOW DO WE PERFORM SIMULATIONS AND CALCULATE SUMMARY STATISTICS?

HOW DO WE PERFORM SIMULATIONS AND CALCULATE SUMMARY STATISTICS?

INHERITED SCRIPT INTENDED FOR SMALL SEQUENCE

- Intended for millions of relatively small simulations
 - I,389 10kb regions
 - 65 individuals
- Took a few minutes to run one simulation
- Ran parallel on U of A HPC
 - I million runs would take approximately I month.

SIMULATE WHOLE CHROMOSOME 10101001101000111100010010100111(

SIMULATE WHOLE CHROMOSOME

- Modified Python script to
 - Simulate whole chromosome
 - Find IBD segments and calculate IBD stats

PROBLEM!

Each core on UA HPC has 6G - **Need memory < 6G** for each run

Max memory < 6G goal Can now run efficiently in parallel

SIMULATIONS ON HTC CLUSTERS, ANALYSES ON VM

GENERALIZATION OF CODE AND WORKFLOW

← → C ≜ Secure https://agladstein.github.io/SimPrily/

🕀 🛧 🕅 (

Hosted on GitHub Pages

Copyright 2018 © SimPrily

Welcome to SimPrily

SimPrily runs genome simulations with user defined parameters or parameters randomly generated by priors and computes genomic statistics on the simulation output.

- Runs genome simulation with model defined by prior distributions of parameters and demographic model structure.
- Can take into account SNP array ascertainment bias by creating pseudo array based on priors of number of samples of discovery populations and allele frequency cut-off.
- Calculates genomic summary statistics on simulated genomes and pseudo arrays.

This is ideal for use with Approximate Bayesian Computation on whole genome or SNP array data.

Uses c++ programs MaCS and GERMLINE. For more information on these programs, see: MaCS Github GERMLINE Github

Quick Start

To start using right away SimPrily, please visit the quickstart page.
SIMPRILY HAS UNIQUE FEATURES

Program	Large loci	Priors	Statistics	SNP ascertainment	нтс
SimPrily (2018)	\checkmark	\checkmark	\checkmark		
Fastsimcoal2 (2013)	\checkmark	\checkmark			
Msprime (2016)	\checkmark		\checkmark		
BaySICS (2014)		\checkmark	\checkmark		\checkmark
Coala (2016)		\checkmark	\checkmark		
SKELESIM (2017)			\checkmark		

Comparison of SimPrily features with other simulators and wrappers.

POTENTIAL APPLICATIONS OF SIMPRILY

- Simulate genome sequence or SNP array data to
 - Test software
 - Infer demographic history with Approximate Bayesian Computation
 - Use as null model when inferring regions under selection
 - Create training and test dataset for machine learning

THEMES OF DISSERTATION

- Detection of runs of homozygosity from SNP arrays
 - Improving identification of runs of homozygosity (Ch. 2)
 - Correcting ascertainment bias in runs of homozygosity (App. C)
- Scaling up Approximate Bayesian Computation for whole chromosomes
 - Create efficient pipeline to simulate demographic models and calculate summary statistics (App. A)
 - Create generalized high throughput workflow (Ch. 4)
- Infer history of the Ashkenazi Jews
 - Substructure in AJ? (Ch. 5)
 - Khazarian origin? (App. B)

DATASET

SNP array data	Sample Size	Source
Eastern Ashkenazi	239	Family Tree DNA, Behar et al. 2010
Western Ashkenazi	19	Family Tree DNA, Behar et al. 2010
Jewish (9 pops)	79	Behar et al. 2010
Middle Eastern (11 pops)	211	Behar et al. 2010, Hammer, HGDP
European (8 pops)	139	Behar et al. 2010, Hammer, HGDP

Whole genome data	Sample Size	Source
Ashkenazi	230	Carmi et al. 2014, Hammer Lab
European, African, Asian, American		CGI, 1000 Genomes

AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN AND EUROPEAN POPULATIONS

- Principal Component Analysis (PCA) a visualization of population genetic structure
- **ADMIXTURE** visualization of population genetic structure

AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN AND EUROPEAN POPULATIONS

AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN AND EUROPEAN POPULATIONS

AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN AND EUROPEAN POPULATIONS

DIFFERENCE BETWEEN EASTERN AND WESTERN?

- Principal Component Analysis (PCA) a visualization of population genetic structure
- **ADMIXTURE** visualization of population genetic structure
- Runs of homozygosity indicates levels of inbreeding or small effective population size
- Identity by Descent (IBD) Indicates shared ancestry between individuals

MODELS OF ASHKENAZI HISTORY

APPROXIMATE BAYESIAN COMPUTATION (ABC)

MODELS OF ASHKENAZI HISTORY

APPROXIMATE BAYESIAN COMPUTATION (ABC)

MODELS OF ASHKENAZI HISTORY

APPROXIMATE BAYESIAN COMPUTATION (ABC)

MODEL ASCERTAINMENT BIAS

Ascertainment parameters:

- Sample sizes of discovery populations
- Minor allele frequency cutoff

Parameter Estimation

Model Choice

Parameter Estimation

Simulate chrI ~IxI0⁶ times for each model

Parameter Estimation

Model Choice

Simulate chrl ~lx10⁶ times for each model

Find the best stats for model choice

ABCtoolbox Greedy search algorithm:
I. For all pairs of stats, evaluate the power to distinguish the models, and retain best 10 pairs,

2. Repeat with triplets,

3. And so forth until the set of best combinations does not change anymore.
100,000 simulations, 1000 retained, 100 cross validations.

Keep 77 combinations of stats with power > 0.5, total of 20 stats

CROSS VALIDATION OF MODEL CHOICE

CROSS VALIDATION OF MODEL CHOICE

0.92 Model 2 Bayes factors greater than Model I Bayes factors when Model I is true model0.86 Model 2 Bayes factors greater than Model 3 Bayes factors when Model 3 is true model

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction

Europe Eastern AJ Western AJ Jewish Middle Eastern

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction .

• First written accounts of "Israel" from Merneptah Stele in 1207 BCE

Europe Eastern AJ Western AJ Jewish Middle Eastern

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Migrations northward from Italy led to AJ community in Rhine Valley by 10th century.
 - In the late 10th, 11th, and 12th centuries charters were issued to protect Jews in towns.
 - In the IIth and I2th centuries the Ashkenazi rabbinic genres formed.

Europe Eastern AJ Western AJ Jewish Middle Eastern
- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Experienced gene flow from Europeans

(unresolved how much or when)

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Experienced gene flow from Europeans

(unresolved how much or when)

- Judaism follows matrilineal descent.
- In Central Europe Jews became increasingly integrated into gentile life.
- In Eastern Europe Jews became increasingly isolated.

Western AJ Jewish Middle Eastern Europe Eastern AJ

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Experienced gene flow from Europeans

(unresolved how much or when)

I6th century Eastern and Western Ashkenazi Jews ____
 diverged

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Migrations from Central Europe to Poland in the 14th, 15th, and 16th centuries.
 - By 16th century Polish Jewry culturally distinct.
- I6th century Eastern and Western Ashkenazi Jews _ diverged

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Experienced gene flow from Europeans

(unresolved how much or when)

- I6th century Eastern and Western Ashkenazi Jews diverged
 - Western AJ moderately grew in size –

- ~ 3000 BCE ancestors of Jewish populations diverged from other Middle Eastern populations
 - Experienced extreme population size reduction
- I3th century ancestors of Ashkenazi Jews diverged from other Jewish populations
 - Experienced another population size reduction
 - Experienced gene flow from Europeans

(unresolved how much or when)

- I6th century Eastern and Western Ashkenazi Jews diverged
 - Western AJ moderately grew in size
 - Eastern AJ massively grew in size —

JOINT POSTERIOR OF EFFECTIVE POPULATION SIZE OF EASTERN AND WESTERN AJ

JOINT POSTERIOR OF EFFECTIVE POPULATION SIZE OF EASTERN AND WESTERN AJ

MORE GROWTH IN EASTERN AJ

Central Europe

- Often expelled from settlements.
- Strict regulations on where Jews could live Protected by nobles. and what they could do to earn a living.

Eastern Europe

- Could generally move freely.

MORE GROWTH IN EASTERN AJ

Central Europe

- Often expelled from settlements.
- Strict regulations on where Jews could live and what they could do to earn a living.
- Legal limitations on the number of Jewish families.
- Cramped ghettos in the 19th century .

Eastern Europe

- Could generally move freely.
- Protected by nobles.
- No limitations from government on number of Jewish marriages

MORE GROWTH IN EASTERN AJ

Central Europe	Eastern Europe
- Often expelled from settlements.	- Could generally move freely.
- Strict regulations on where Jews could live	- Protected by nobles.
and what they could do to earn a living.	- No limitations from government on number
- Legal limitations on the number of Jewish	of Jewish marriages
families.	 Adherence to religious and traditional
- Cramped ghettos in the 19 th century	norms and economic structures encouraged
- Integration into non-Jewish society.	early marriage and high fertility.

IMPORTANCE OF WORK

Historical / Cultural	Evolution / Population genetics	Medical
Resolved controversial question of Jewish population growth in Eastern Europe.	Demonstration of inference of very recent history.	How do different growth rates in Western and Eastern AJ affect the frequency of deleterious mutations?

FUTURE DIRECTIONS

- Infer demographic history in other populations with histories of population size changes or inbreeding and admixture
- Approximate Bayesian Computation
 - Using other statistics to better infer admixture
- Machine learning
 - Without using genomic statistics

THANK YOU!

HAMMER LAB (AND FORMER)

- Michael Hammer
- Consuelo Quinto-Cortes
- August Woerner
- Fernando Mendez

UA HPC CONSULTING

- Mike Bruck
- Dima Shyshlov

Mats Rynge

UW CENTER FOR HTC

- Lauren Michael
- Christina Koch

OPEN SCIENCE GRID USER SCHOOL

- Tim Cartwright
- Lauren Michael
- Christina Koch

Pegasus

loch

Extreme Science and Engineering Discovery Environment

CODING MINIONS

- David Christy
- Logan Gantner
- Mack Skodiak
- Daniel Olson
- Rafael Lopez
- Kayleen Gurrola
- Katie McCready
- CYVERSE
- Blake Joyce
- Julian Pistorius

CYVERSE

RESOURCES PROVIDED BY

- University of Arizona HPC
- University of Wisconsin HTC
- CyVerse
- Open Science Grid
- XSEDE
 - Bridges
 - Comet
 - Jetstream

osg connect