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HOW DID HUMANS SPREAD ACROSS THE 
WORLD?

WHAT DEMOGRAPHIC EVENTS LEAD US TO WHERE 
WE ARE TODAY AND THE DIVERSITY WE SEE?

(Nielsen et al. 2017)



(Nielsen et al. 2017)



BASIC RESEARCH IS IMPORTANT!

• My research focuses on a small part of basic 
evolutionary biology questions.  

• Huge computational resources and modern 
techniques to contribute to basic evolution 
questions



THEMES OF DISSERTATION

• Detection of runs of homozygosity from SNP arrays
• Improving identification of runs of homozygosity (Ch. 2)

• Correcting ascertainment bias in runs of homozygosity (App. C)

• Scaling up Approximate Bayesian Computation for whole chromosomes
• Create efficient pipeline to simulate demographic models and calculate summary statistics (App.  A)

• Create generalized high throughput workflow (Ch. 4)

• Infer history of the Ashkenazi Jews
• Substructure in AJ? (Ch. 5)

• Khazarian origin? (App. B)



WHO ARE THE ASHKENAZI JEWS?

Culturally, religiously, and 
linguistically identify as 
Jews whose ancestors 
came from the Rhine 
Valley.



ASHKENAZI JEWS:
AN INTERESTING STUDY POPULATION

• High frequency of 
genetic disorders
• Population isolate
• Complex demographic 

history
• Well documented 

historical record



Israel
(1200 BCE – 70 CE)

Italy
(300 BCE – present)

Rhine Valley
(900 CE – present)

Eastern Europe
(1200 CE – present)

HYPOTHESIS OF ASHKENAZI ORIGINS
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http://cojs.org/wp-content/uploads/2015/11/Torlonia.jpg



Israel
(1200 BCE – 70 CE)

Italy
(300 BCE – present)

Rhine Valley
(900 CE – present)

Eastern Europe
(1200 CE – present)

HYPOTHESIS OF ASHKENAZI ORIGINS

https://fotoeins.com/2016/08/24/shum-cities-schum-staedte-speyer-worms-
mainz/



Israel
(1200 BCE – 70 CE)

Italy
(300 BCE – present)

Rhine Valley
(900 CE – present)

Eastern Europe
(1200 CE – present)

HYPOTHESIS OF ASHKENAZI ORIGINS

https://www.historyextra.com/period/medieval/the-jews-of-
medieval-england/



Yiddish	Dialects

Eastern	dialect
Western	dialect

Czech	
dialect

Hungarian	
dialect

Ukrainian	
dialect

Polish	
dialect

Belorussian-
Lithuanian	
dialect

Approximate	Yiddish	territories	at	the	end	of	the	
19th century	to	beginning	of	the	20th century

Border	between	Western	and	Eastern	Yiddish

Border	between	dialects
Border	of	subdialects

Modern	country	borders

The	Pale	in	the	Russian	Empire

Mixed	Zones

The	Pale

WESTERN VS. EASTERN ASHKENAZI JEWS

Cracow, Poland. 1932
Germany, 1900’s

JDC Archives. Reference Code: NY_02044

YIVO Institute for Jewish Research. People of 
a Thousand Towns. Online Photographic 
Catalog. Record Id: 6820



WESTERN VS. EASTERN ASHKENAZI JEWS

YIVO Institute for Jewish Research. People of 
a Thousand Towns. Online Photographic 
Catalog. Record Id: 6820

JDC Archives. Reference Code: NY_02044
Cracow, Poland. 1932

Germany, 1900’s
DellaPergola 2001

Eastern AJ

Western AJ



PREVIOUS STUDIES

• Most closely related to other Jewish 
populations

• Middle Eastern origin

• Bottlenecks

• Population reduction ~30 gen ago

• Exponential growth ~30 gen ago

• At least 2 admixture events

• Southern Europeans ~35-60%, ~25-
50 gen ago

• Eastern Europeans ~15-25%, ~10-20 
gen ago Behar et al. 2010; Palamara et al. 2012; Carmi et al. 2014; Xue et al. 2016



PREVIOUS STUDIES: AJ SUBSTRUCTURE

Y chromosome and mtDNA markers show differences 
among AJ from different countries

Behar et al. 2004a Behar et al. 2004b

Eastern AJ Western AJ



PREVIOUS STUDIES: AJ SUBSTRUCTURE

No intra-
population 
structure found 
with SNP array 
data

Guha et al. 2012



MODELS OF ASHKENAZI HISTORY



THEMES OF DISSERTATION

• Detection of runs of homozygosity from SNP arrays
• Improving identification of runs of homozygosity (Ch. 2)

• Correcting ascertainment bias in runs of homozygosity (App. C)

• Scaling up Approximate Bayesian Computation for whole chromosomes
• Create efficient pipeline to simulate demographic models and calculate summary statistics (App.  A)

• Create generalized high throughput workflow (Ch. 4)

• Infer history of the Ashkenazi Jews
• Substructure in AJ? (Ch. 5)

• Khazarian origin? (App. B)



HAPLOTYPES CAN BE USED TO INFER HISTORY

•Over time, recombination breaks up segments of the genome in 
predictable ways

• Segments identical by descent (IBD)
gene flow, effective size, relatedness

• Runs of homozygosity (ROH)
effective size, relatedness, random mating

• Linkage disequilibrium blocks (LD)
gene flow, effective size

• Ancestry blocks
gene flow
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SEGMENTS IDENTICAL BY DESCENT (IBD)

A region on two chromosomes that was inherited from a common ancestor

• Every site is (technically) IBD

• Practically, we define IBD based on a minimum length



RUNS OF HOMOZYGOSITY (ROH)

• A ROH is a genomic segment of continuous homozygous sites.

• ROH are defined based on a minimum length

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. 
Each shaded grey area is a ROH



RUNS OF HOMOZYGOSITY (ROH)

• A ROH is a genomic segment of continuous homozygous sites.

• ROH are defined based on a minimum length

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. 
Each shaded grey area is a ROH

ROH reflect relatedness of ancestors
Smaller Ne increases likelihood of creating ROH



SINGLE NUCLEOTIDE POLYMORPHISM 
(SNP) ARRAYS

• Genome-wide and many SNPs (100 K’s – millions)

• Benefits:

• Inexpensive

• Low genotyping error rates

• Easy to work with 

• Disadvantages:

• Ascertainment bias – reduction of represented genetic 
diversity



HOW DOES BIAS FROM SNP ARRAYS 
AFFECT HAPLOTYPE STATISTICS?

• Extensive work on the effect of ascertainment 
bias on the allele frequency spectrum.

•Haplotype statistics considered to be less 
sensitive to ascertainment bias. 









SIMULATE GENOME

• Coalescent simulation
• 100 iterations

• Ne = 1000
• Random t, such that Fst = [0,0.2]



CREATE PSEUDO ARRAY 

Use samples from population A to make pseudo array



FIND ROH

◦ Genome ROH: Script that finds pure ROH longer than k.

◦ Pseudo array ROH:
◦ Script that finds pure ROH longer than k.
◦ PLINK 1.09 (program used for SNP array data)

ROH on a chromosome. Each dotted grey line is a homozygous site and each red line is a heterozygous site. 
Each shaded grey area is a ROH



OPTIMIZE PLINK PARAMETERS

• Run PLINK on pseudo array with grid search of parameters 
(6,561 parameter sets)

• Identify parameter sets that give ROH closest to true ROH

Length of runs of homozygosity

True ROH 
from 
genome 
simulation

PLINK ROH 
from pseudo 
array



IDENTIFYING CLOSEST ROH TO GENOME ROH

Mean ROH length Variance of ROH length Number of ROH



good bad

RESULTS: BEST PLINK PARAMETERS

*Not real data



These 
parameter sets 
consistently 
find ROH with 
similar length 
distribution to 
real ROH

The distribution of d for 
each parameter set in 
the top half of the grid 
search, with 100 
simulations. Each line is a 
different parameter set. 
The dashed line is the 
5% cutoff from the 
distribution of d with all 
parameter sets.

Default parameters

good bad

RESULTS: BEST PLINK PARAMETERS



DISTRIBUTION OF ROH LENGTHS 
FROM WHOLE GENOME DATA

PLINK Best parameters

strictROH script

genome

PLINK Default, min 100kb

ROH length (kb)

PLINK Default
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DISTRIBUTION OF ROH LENGTHS 
FROM WHOLE GENOME DATA

PLINK Default

PLINK Best parameters

strictROH script

genome

PLINK Default, min 100kb

Best PLINK parameters and strictROH find ROH from 
arrays that have closer length distribution to genome ROH 

ROH length (kb)



DEVELOPED CORRECTION FOR ASCERTAINMENT BIAS 
WITH STRICTROH AND BEST PLINK PARAMETERS 

• 128 AJ whole genomes published

• Can incorporate SNP array ascertainment into 
model for ABC

Effect of ascertainment bias on ROH in humans not substantial

Can check for 
ascertainment 

bias in IBD

Effects of 
ascertainment 

bias taken care of



THEMES OF DISSERTATION

• Detection of runs of homozygosity from SNP arrays
• Improving identification of runs of homozygosity (Ch. 2)

• Correcting ascertainment bias in runs of homozygosity (App. C)

• Scaling up Approximate Bayesian Computation for whole chromosomes
• Create efficient pipeline to simulate demographic models and calculate summary statistics (App.  A)

• Create generalized high throughput workflow (Ch. 4)
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• Khazarian origin? (App. B)



EXAMPLES OF DEMOGRAPHIC EVENTS

Effective population size

past

present



DEMOGRAPHIC PARAMETERS DEFINE 
POPULATIONS’ HISTORIES

• A demographic model generates data, 
determined by a set of parameters

• Parameter examples: 

• population sizes, 

• divergence times, 

• admixture proportions, etc.

A B C

T1

T2



WHAT IS ABC?

• We want the posterior probability of the parameters given the data (D)

! " # = ! # " ! "
! #

• Approximate the likelihood function by simulations that are compared 
to the data (D)

Posterior 
probability

Likelihood of the data
Prior probability of the 
parameter

Marginal likelihood



WHAT IS APPROXIMATE BAYESIAN COMPUTATION 
(ABC) USED FOR?

A B C A B C

vs.

A B C

T1?

T2?

Infer parameter values Choose among models



OVERVIEW OF ABC STEPS

1. Define priors of parameters of model

2. Simulate data many times

3. Summarize genetic data with population 
genetics statistics 

4. Choose model and estimate 
parameters based on simulations 
closest to observed data

Sunnaker et al. (2013).



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
0. COLLECT DATA AND CALCULATE SUMMARY STATISTICS 

1 rs3094315 0 742429 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
1 rs12562034 0 758311 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1 rs3934834 0 995669 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1
1 rs9442372 0 1008567 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 rs3737728 0 1011278 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 rs11260588 0 1011521 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
1 rs9442398 0 1011558 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1
1 rs6687776 0 1020428 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1
1 rs9651273 0 1021403 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs4970405 0 1038818 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs12726255 0 1039813 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1
1 rs7540009 0 1050098 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
1 rs11807848 0 1051029 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1
1 rs9442373 0 1052501 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1
1 rs2298217 0 1054842 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs12145826 0 1055892 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs4970357 0 1066927 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs9442380 0 1077546 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 rs7553429 0 1080420 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1
1 rs4970362 0 1084601 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1

◦ Number of segregating 
sites

◦ nucleotide diversity
◦ Fst
◦ Tajima’s D
◦ IBD stats, etc. 



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
1. PICK MODELS AND PRIORS

◦Parameters (!):
◦ Divergence times (Ti)
◦ Population sizes (Nj)
◦ Proportion of gene flow (mj)
◦ etc…

A B CA B C
M1 M2

T1

T2ma mc

T1

T2

Na Nb Nc Na Nb Nc



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
2. SIMULATE MODELS ACCORDING TO THE PRIORS AND 
CALCULATE SUMMARY STATISTICS

Sunnaker et al. (2013).



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
3. ADDRESS CORRELATIONS AMONG STATISTICS

• Prune statistics for high pairwise correlation

or

• Transform statistics with Partial Least Squares (PLS)



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
4. RETAIN N CLOSEST SIMULATIONS TO OBSERVED DATA

• Creates truncated prior by accepting some proportion of parameters and 
summary stats pairs closest to observed data

• Closest is defined by Euclidean distance between the simulated and 
observed summary statistics

(Lintusaari et al. 2017)



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
5. LINEAR REGRESSION ON THE SUMMARY STATISTICS 
AND TRUNCATED PRIOR

• Retained parameter values 
adjusted according to a linear 
transformation

• New parameter values form a 
sample from the posterior

(Csillery et al. 2010)



IMPLEMENTATION OF ABC WITH ABCTOOLBOX:
7. BUILD POSTERIOR DISTRIBUTION OF 
PARAMETERS

PosteriorTruncated Prior Posterior



HOW DO WE PERFORM SIMULATIONS AND 
CALCULATE SUMMARY STATISTICS?

A B C

T1

T2

Define 
model
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A B C

T1

T2

Define 
model

Coalescent 
simulation



HOW DO WE PERFORM SIMULATIONS AND 
CALCULATE SUMMARY STATISTICS?

A B C

T1

T2

110000111101111011
110011110000100001
001111000011110111
101100001111000010
000100110000001001
000000000000111100
001000010000001111
000010000100001100
001111011110111111
000011110111101111
110000111101111011

Define 
model

Coalescent 
simulation

Store 
genotype 

data



HOW DO WE PERFORM SIMULATIONS AND 
CALCULATE SUMMARY STATISTICS?

A B C

T1

T2

110000111101111011
110011110000100001
001111000011110111
101100001111000010
000100110000001001
000000000000111100
001000010000001111
000010000100001100
001111011110111111
000011110111101111
110000111101111011

def
FST2(seq1,pi1,nseq1,seq2,pi2,nseq2):

k3=0
pw=(pi1+pi2)/2
for i in xrange(len(seq1)):

si = seq1[i]
for j in xrange(len(seq2)):

k3=k3+hd(seq1[i],seq2[j])
pb=k3/(float(nseq1)*float(nseq2))
if (pb==0):
return '0'

else:
fst=float(1-(pw/pb))
return fst

Define 
model

Coalescent 
simulation

Store 
genotype 

data

Calculate 
statistics
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PLEASANTLY PARALLEL!



INHERITED SCRIPT INTENDED FOR 
SMALL SEQUENCE

00000110001

00100010000

00000100101

00100000000

00010001010

00100010001

• Intended for millions of 
relatively small simulations

• 1,389 10kb regions

• 65 individuals

• Took a few minutes to run 
one simulation

• Ran parallel on U of A HPC

• 1 million runs would take 
approximately 1 month.
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SIMULATE WHOLE CHROMOSOME

~250 million sites on human chromosome 1



SIMULATE WHOLE CHROMOSOME

• Modified Python script to 

• Simulate whole chromosome

• Find IBD segments and calculate IBD stats



PROBLEM!

Parameters Average 
Walltime

Average 
Memory

Minimum 00:21:00 2.7 Gb
Random 00:55:11 20 Gb
Maximum 08:02:11 117 Gb

Too much memory!

Over a decade to complete
6000 runs/month w/ UA resources

Each core on UA HPC has 6G - Need memory < 6G for each run



PROFILE OF PYTHON SCRIPT

good bad

good

bad



PROFILE OF PYTHON SCRIPT

good bad

good

bad



good

bad

good bad

PROFILE OF PYTHON SCRIPT



Maximum Simulation Parameters

Max memory < 6G goal
Can now run efficiently in parallel



PLEASANTLY PARALLEL & RESOURCE LIGHT!

Same input

Combined output• Each job 
• runs ~40 min, and max 50 hrs
• Uses ~1G, and max 5G memory
• Uses ~2M in storage



HIGH THROUGHPUT COMPUTING

OSG
XSEDE
UA HPC
UW HTC



SIMULATIONS ON HTC CLUSTERS, ANALYSES ON VM

CyVerse
Atmosphere

XSEDE UA HPCUW
HTC

OSG Connect

Simulations

Data storage,
Analyses

CyVerse
Data Store

Google 
Drive

Data backup



GENERALIZATION OF CODE AND WORKFLOW



SIMPRILY HAS UNIQUE FEATURES

Program Large loci Priors Statistics SNP ascertainment HTC

SimPrily (2018)

Fastsimcoal2 (2013)

Msprime (2016)

BaySICS (2014)

Coala (2016)

SKELESIM (2017)

Comparison of SimPrily features with other simulators and wrappers. 



POTENTIAL APPLICATIONS OF SIMPRILY

• Simulate genome sequence or SNP array data to

• Test software

• Infer demographic history with Approximate Bayesian Computation
• Use as null model when inferring regions under selection
• Create training and test dataset for machine learning



THEMES OF DISSERTATION

• Detection of runs of homozygosity from SNP arrays
• Improving identification of runs of homozygosity (Ch. 2)

• Correcting ascertainment bias in runs of homozygosity (App. C)

• Scaling up Approximate Bayesian Computation for whole chromosomes
• Create efficient pipeline to simulate demographic models and calculate summary statistics (App.  A)

• Create generalized high throughput workflow (Ch. 4)

• Infer history of the Ashkenazi Jews
• Substructure in AJ? (Ch. 5)

• Khazarian origin? (App. B)



DATASET

SNP array data Sample Size Source
Eastern Ashkenazi 239 Family Tree DNA, Behar et al. 2010
Western Ashkenazi 19 Family Tree DNA, Behar et al. 2010
Jewish (9 pops) 79 Behar et al. 2010
Middle Eastern (11 pops) 211 Behar et al. 2010, Hammer, HGDP
European (8 pops) 139 Behar et al. 2010, Hammer, HGDP

Whole genome data Sample Size Source
Ashkenazi 230 Carmi et al. 2014, Hammer Lab

European, African, Asian, American CGI, 1000 Genomes



AJ GENETIC RELATIONSHIP TO MIDDLE 
EASTERN AND EUROPEAN POPULATIONS 

• Principal Component Analysis (PCA) – a visualization of 
population genetic structure

•ADMIXTURE – visualization of population genetic structure



AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN 
AND EUROPEAN POPULATIONS 
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Western

Eastern
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AJ GENETIC RELATIONSHIP TO MIDDLE EASTERN 
AND EUROPEAN POPULATIONS 

Ashkenazi

European

Middle Eastern

Jewish

Western

Eastern

K=3



DIFFERENCE BETWEEN 
EASTERN AND WESTERN?

• Principal Component Analysis (PCA) – a visualization of 
population genetic structure

•ADMIXTURE – visualization of population genetic structure
• Runs of homozygosity – indicates levels of inbreeding or small 

effective population size

• Identity by Descent (IBD) – Indicates shared ancestry 
between individuals



West East



West East



FIS

West East

West East
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MODEL ASCERTAINMENT BIAS

Ascertainment parameters:

• Sample sizes of discovery populations

• Minor allele frequency cutoff

Discovery 
populations
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Model Choice Parameter Estimation

Simulate chr1 ~1x106

times for each model

Find the best stats for 
model choice

ABCtoolbox Greedy search algorithm:
1. For all pairs of stats, evaluate the power to 

distinguish the models, and retain best 10 
pairs,

2. Repeat with triplets,
3. And so forth until the set of best 

combinations does not change anymore.
100,000 simulations, 1000 retained, 100 cross 
validations.
Keep 77 combinations of stats with power > 0.5, 

total of 20 stats
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Model Choice

Simulate chr1 ~1x106

times for each model

Find the best stats for 
model choice

Choose best model with 
ABC

• 9, 11, 13 parameters
• ~1x106 simulations
• 1000 retained
• 1000 cross validation

Parameter Estimation
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ABC WORKFLOW

Model Choice Parameter Estimation

Simulate chr1 ~1x106

times for each model

Find the best stats for 
model choice

Choose best model with 
ABC

Simulate genome 
~1x105 times

Update chrs
~1x105 times

Simulate chr1 
~1x106 times

Transform stats 
with PLS

Estimate 
parameters

• 11 parameters
• ~1x106 or ~1x105

simulations
• 10 PLS components
• 1000 retained



MODEL CHOICE

Posterior probability: 0.0005 0.67 0.33
Bayes Factor: 0.0005 2.01 0.50
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CROSS VALIDATION OF MODEL CHOICE

0.92 Model 2 Bayes factors greater than Model 1 Bayes factors when Model 1 is true model
0.86 Model 2 Bayes factors greater than Model 3 Bayes factors when Model 3 is true model



MODEL CHOICE

Posterior probability: 0.0005 0.67 0.33
Bayes Factor: 0.0005 2.01 0.50
Prob. false negative: 0.08 0.14
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BEST MODEL

• Migrations northward from Italy led to AJ 
community in Rhine Valley by 10th century.

• In the late 10th, 11th, and 12th centuries charters 
were issued to protect Jews in towns.

• In the 11th and 12th centuries the Ashkenazi 
rabbinic genres formed.
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• Judaism follows matrilineal descent.
• In Central Europe Jews became increasingly 

integrated into gentile life.
• In Eastern Europe Jews became increasingly isolated.
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BEST MODEL

• ~ 3000 BCE ancestors of Jewish populations diverged 
from other Middle Eastern populations

• Experienced extreme population size reduction

• 13th century ancestors of Ashkenazi Jews diverged from 
other Jewish populations

• Experienced another population size reduction

• Experienced gene flow from Europeans 

(unresolved how much or when)

• 16th century Eastern and Western Ashkenazi Jews 
diverged

• Migrations from Central Europe to Poland in the 
14th, 15th, and 16th centuries.

• By 16th century Polish Jewry culturally distinct.
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BEST MODEL

• ~ 3000 BCE ancestors of Jewish populations diverged 
from other Middle Eastern populations

• Experienced extreme population size reduction

• 13th century ancestors of Ashkenazi Jews diverged from 
other Jewish populations

• Experienced another population size reduction

• Experienced gene flow from Europeans 

(unresolved how much or when)

• 16th century Eastern and Western Ashkenazi Jews 
diverged

• Western AJ moderately grew in size

• Eastern AJ massively grew in size



JOINT POSTERIOR OF EFFECTIVE POPULATION 
SIZE OF EASTERN AND WESTERN AJ



JOINT POSTERIOR OF EFFECTIVE POPULATION 
SIZE OF EASTERN AND WESTERN AJ

Probability 
NEA > NWA

Chr1 0.69
Genome 0.62
Updated chr5 0.70
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MORE GROWTH IN EASTERN AJ

Central Europe Eastern Europe
- Often expelled from settlements.
- Strict regulations on where Jews could live 

and what they could do to earn a living.
- Legal limitations on the number of Jewish 

families.
- Cramped ghettos in the 19th century  
- Integration into non-Jewish society.

- Could generally move freely.
- Protected by nobles.
- No limitations from government on number 

of Jewish marriages
- Adherence to religious and traditional 

norms and economic structures encouraged 
early marriage and high fertility.



IMPORTANCE OF WORK

Historical / 
Cultural

Evolution / 
Population genetics

Medical

Resolved controversial 
question of Jewish population 
growth in Eastern Europe.

Demonstration of inference 
of very recent history. 

How do different growth rates 
in Western and Eastern AJ 
affect the frequency of 
deleterious mutations?



FUTURE DIRECTIONS

• Infer demographic history in other populations with histories 
of population size changes or inbreeding and admixture

• Approximate Bayesian Computation
• Using other statistics to better infer admixture
•Machine learning

•Without using genomic statistics
“Big Data”
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